If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16.1x^2+60x=40
We move all terms to the left:
16.1x^2+60x-(40)=0
a = 16.1; b = 60; c = -40;
Δ = b2-4ac
Δ = 602-4·16.1·(-40)
Δ = 6176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6176}=\sqrt{16*386}=\sqrt{16}*\sqrt{386}=4\sqrt{386}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-4\sqrt{386}}{2*16.1}=\frac{-60-4\sqrt{386}}{32.2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+4\sqrt{386}}{2*16.1}=\frac{-60+4\sqrt{386}}{32.2} $
| -9+s/4-3ss=12 | | 4n-8=6n-6 | | 2/x+3/4x+8=-7 | | 2x-3=x+5* | | X+0.07x=739370 | | 4.1.8=1.5y-4.2 | | 2x2-34x+105=0 | | Y=(n²+1)+n | | 3y-1/2=5/2=y | | 5x+2-3x=3x+12-3x | | Y=2n+4 | | 3y−12=52+y | | 7-3(2x-4)=-29 | | 4.4=0.7+x | | 9x-3)+(15x-39)/2=11x-9 | | N-247x5=175 | | 1000=900/(1+r) | | y=0.29(8)+5.96 | | y=0.29(5)+5.96 | | y=0.29(2)+5.96 | | |-2a+5|=9. | | 4.95+0.65x=16.00 | | .69x=5338 | | 11/5m=47/10 | | 2.95+0.45x=11.05 | | -n+5=16 | | -4/5n+28=8 | | 4x+3x+3+9=13 | | 22+n/8=25 | | -2a+5=9 | | 10^n+10^n=0 | | x+2(x-1)+3(x+2)=4(x+3) |